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N-dimensional fractional diffusion equation and Green function approach: Spatially dependent
diffusion coefficient and external force
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We investigate anV-dimensional fractional diffusion equation with radial symmetry by using the Green
function approach. We consider, in our analysis, the spatial dependence on the diffusion coefficient and the
presence of an external force. In particular, we employ boundary conditions in a finite interval and after we
extend it to a semi-infinite interval. We also show that a rich class of diffusive processes, including normal and
anomalous ones, can be obtained from the solutions found here.
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I. INTRODUCTION foreve). Indeed, if we write the equation in the forap

— 1N (pA-1 e
The fractional approach applied to anomalous diffusion- T ¢ "7) and assume the boundary conditions

has attracted the attention of many scientjds7]. In fact, ~ J(*,1)—0, it can be shown thafydr r"p is a constant of

the diffusion equations that emerge from this approach havotion. . o _ _

been applied in a rich variety of scenarios such as relaxation The plan of this work is to investigate the time dependent
to equilibrium in systemgsuch as polymer chains and mem- Solutions of Eq(1) by considering several situations, such as
brane$ with long temporal memory{8—11], anomalous the absence of external forces, taking a spatial time depen-
transport in disordered systenis2], diffusion on fractals ~dence in the diffusion coefficient into account, and introduc-
[13], and modeling of non-Markovian dynamical processed"d an external force in the system. In this context, we first
in protein folding [14]. Formal properties concerning the Study the situations characterized by boundary conditions de-
fractional diffusion equations have also been investigatedined in a finite interval and then we extend our analysis to a
For instance, if15] the fractional diffusion and wave equa- Semi-infinite interval. These developments are done in Sec.
tions are discussed, ifiL6] boundary value problems for Il- In Sec. Ill, we present the conclusions.

fractional diffusion equations are studied| V] a fractional
Fokker-Planck equation is derived from a generalized master
equation, in[18] the behavior of fractional diffusion at the
origin is analyzed, in19-29 the solutions of the time frac-  We start our discussion by considering.&hdimensional
tional diffusion equation are obtained, [26] a harmonic fractional diffusion equation with radial symmetry in the ab-
analysis of random fractional diffusion-wave equations issence of external forces, taking a spatial dependence on the
done, and in[27] a fractional Kramers equation is intro- diffusion coefficient, i.e.P(r)=Dr~?, into account. This spa-
duced. In this direction, we focus on the analysis of the folial dependence on the diffusion coefficient has been used to

Il. FRACTIONAL DIFFUSION EQUATION

lowing fractional diffusion equation: investigate several physical situations such as the fast elec-
g7 1 g 9 trons in a hot plasma in the presence of an electric fi2®d,
R’p = i rN‘l{D(r)Ep - F(r)p] 1) turbulencd 30,31, and diffusion on fractalg32,33. For this
case, Eq(1) is given by
where F(r) is an external force, € y<1, andD(r) is a
diffusion coefficient with a spatial dependence. The time @ D49 rN_lr_gﬁ 2
fractional derivative is considered in the Caputo representa- at“/p_ N1 or arp '

tion [28]. We consider a spatial dependence on the diffusion

coefficient, i.e.,D(r)=Dr~?, and the presence of an external It is interesting to note that fop=1 and#=0 Eq.(2) recov-
force F(r)=—kr+Kr® with a=-1-6. We investigate the so- ers the usual case and fé=0 it recalls a diffusion equation
lutions for Eq.(1) by using the Green function method taking used in[18] to investigate the behavior of the solution near
finite and semi-infinite boundary conditions into account. Itthe origin when the free boundary condition is employed.
is interesting to note that these kinds of boundary conditions;iere, we analyze Eq2) by using the boundary condition
which appear in several physical contexts, have not beep(a,t)=0. Similar boundary condition is found in the analy-
properly investigated in the fractional context. Notice thatsis of polymer dynamics, stratified porous media, and photo-
Eq. (1) recovers the usual radial diffusion equation forl.  conductivity in amorphous semiconductors. By solving the
For Eq. (1), it can be verified thafydr rM1p is time inde-  above equation subjected to this boundary condition, we ob-
pendent(hence, ifp is normalized at=0, it will remain so  tain
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FIG. 2. Behavior ofp(r,t) versusr for typical values oft by
considering, for simplicity,y=0.5, a=6.0, N=3.0, §=0, and D
=1.0. The initial condition used for this case is thedimensional
Dirac & function, i.e.,p(r,0)=4&(r)/rN=1, in arbitrary units.

FIG. 1. Behavior ofG(r, &,t) versusr for typical values of9 and
v, by considering, for simplicityt=1.0, é=2.0,a=6.0,N'=3.0, and
D=1.0, in arbitrary units.

a
rt)= [ deeV rEt), Eq. (3) by employing, for simplicity, /=0 and the initial
Py fo ££75(9G(r.£Y condition p(r , 0)= &(r)/rAL
We may extend the above result found for Eg) by
consideringa— . To obtain this extension, it is useful to

2+0 © §(2+0—/\/)/2r(2+0—N)/2 use
Gr.60=—5 > ~ SE(= DNJY)
n=0 n o
(2+0)/2
{JN/(zw)(z N 0a )} p(r,t) = fo dkC(k,t)¥(r.k),

o\, £2+02

X J(/\/—z—ﬂ)/(zw)(z—w) okr(2+0)2
W(r,k) = r(2+9—A/)/2J(N_2_9)/(2+9)<2—) ’ @

2)\nr(2+0)/2 +0

XIn-2- —, 3 : N~
W=2=0l2ro\ 5 L ® whereC(k,1) is the kernel to be found. By substituting Eq.

(4) in Eqg. (2), we obtain

where N'=2+6, \,, (eigenvalug is obtained from the equa- »
tion ;J(./\f_—z—e)/(zwg{.[Z)\n/(Z+0)]a(2+0)/2}:0 ?ndp(f ,0)=p(r) is d—C(k,t) = - DK (K ). (5)
the initial condition. In Eq(3), G(r,§,t) is the Green func- dt”
tion andE,(x) is the Mittag-Leffler function which is given ) _ Sy
by E,(x)=2_ox"/T'(1+yn). The Mittag-Leffler function is By solving I_Eq. ®), we found C(If,t_)_—C(k,O)_E_y(—k Dt )’_
an extension of the usual exponential and the presence of thféhereC(k, 0) is determined by the initial condition. By using
function in Eq.(3) is a consequence of the changes produced!® initial conditionp(r,0)=p(r), we verify
in the waiting time probability density function by the frac- "
gonal derivative. In (_)rder to i_IIus_trate the effect produced C(k,0) = 2k dé EHOW(EK). (6)

ue to the time fractional derivative and the spatial depen- 2+60),
dence of the diffusion coefficient, we plot the Green function
in Fig. 1. In Fig. 2, we show the time evolution behavior of Thus, the solution for this case is given by
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FIG. 3. Behavior ofG(r, ¢,t) versusr for a typical values ofy
by considering, for simplicityt=1.0,£=2.0,'=3.0, andD=1.0, in
arbitrary units.

p(r,t)=f d¢ EB(OG(r, &),
0

©

Ggr,&t = %9 dk k¥ (&KW (r,KE, (- KDtY). (7)

In particular, fory=1, we can simplify the above equation by
using the identity

. 22 1 _ 2 w242, | @B
J dk kJ,(ak)J,(Bk)e &k =528 (p+a%)/aa |V<—2>

0 2a
(8)
to obtain
—(r2+‘9+§2+0)/(2 + Q)ZDI/(D'[)
r,ét) = oo
g( ‘f ) (2+0)(§r)(/\/ 2-6)/2
2(§r)(2+0)/2

X1 (\=2-9)1(2+0) { (2+07Dt (9

wherel (x) is a modified Bessel functiofsee Fig. 3. In this
context, an interesting result emerges from Ef).for y=1
with the initial conditionp(r,0)=4&(r)/rN=1, In fact, for this
case Eq.7) is reduced top(r,t)cce™ 12+0°Dt NI2+0) by
using Eq.(9) and this initial condition. This distribution has
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the diffusion equations proposed in the literature to investi-
gate diffusion on fractals are reviewed and critically dis-
cussed. Note also that the asymptotic expression fo(#q.
taking the large argument fdg(x) into account is given by
G E0) ~ (§r)(2+3_zml4e_(r(z+9)/2_ £2+01225 4 a)th.
\r4’7TDt

(10)

The above equation can be considered as an extension of the
asymptotic results reported [2] for homogeneous and iso-
tropic random walk models. The asymptotic behavior for the
second moment associated with this process3s~ t%/(2+9

for long times. In particular, we can verify from this
asymptotic behavior for the second moment that@ 6=0,

and —-2< #<0 correspond to sub-, normal, and superdiffu-
sive cases, respectively.

Let us incorporate an external force in Eg). More pre-
cisely, we consider the external for€dr)=—kr+/r® with
a=-1-46, the boundary conditiop(x,t)=0, and the initial
condition p(r,0)=p(r). This external force leads us to an
extension of the Ornstein-Uhlenbeck procg34]| and the
Rayleigh proces$35]. In addition, it is also similar to the
one used if36] to investigate new solutions for the nonlin-
ear diffusion equation. Notice that to obtain an exact solution
for Eq. (2) in the presence of the above external force with a
generic« is a hard task. For this reason and to make it
possible to obtain an analytical solution in a closed form, we
have considered the relation betweerand 6 given by «
=-1-46. In order to obtain the solution, we expap( ,t) in
terms of the eigenfunctions, i.e., we employ

plr,) =PRI W oy (1D
n=0

with W (r) (eigenfunction determined by the spatial equa-
tion and®,(t) obtained from the time equation. After some
calculation, it is possible to show that

@ ﬂ)
Pa(r) =Ly ((2+0)D ,

()= — 2L+ ( k )“*ND)’@*"’)D
U TUK+ND)(2+6)D+n)\ (2+6)D
~ k§2+0
XE (= Nl f dg &Vt (g)U“)( 2+ 9D ) (12)

with a={(K+ND)/[(2+6)D]}-1, whereLif‘)(x) are associ-
ated Laguerre polynomials angl=(2+#6)nk. This result ex-
tends the result found ir2] for a linear external force and for
v=0, N=1, and9=0 we recover the solution for the Ray-
leigh process present [85]. It is also interesting to note that
for this case the stationary solution is equal to the usual one.
In particular, the second moment for this case con-
sidering, for simplicity, #=0, is given by (r®=2(ND

been applied to investigate situations related to turbulence IOt’E,, ,.1(—2kt?), whereE,, 4(x)=2_ox"/T'(un+p) is the

[30] and diffusion on fractal$32,33. In particular, in[33]

generalized Mittag-Leffler function.
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Il. SUMMARY AND CONCLUSIONS external forcek In particular, the presence of this function in

In summary, we have investigated the solutions for arfh® Solutions is a consequence of the changes produced in the
N-dimensional fractional diffusion equation within radial Waiting time probability density function by the fractional
symmetry. We have obtained the solution for this equation byferivative. Finally, we expect that the results presented here
considering the absence of an external force and taking finitén be useful in the investigation of systems that exhibit
and semi-infinite boundary conditions into account. We havéinomalous diffusion.
also considered the presence of an external force. This result
is in agreement with the results found[®). For time depen-
dent solutions, we have the presence of the Mittag-Leffler
function, which is an extension of the usual exponential, in We thank CNPq, Fundac&o Araucaria, and CTPETRO
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