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We investigate anN-dimensional fractional diffusion equation with radial symmetry by using the Green
function approach. We consider, in our analysis, the spatial dependence on the diffusion coefficient and the
presence of an external force. In particular, we employ boundary conditions in a finite interval and after we
extend it to a semi-infinite interval. We also show that a rich class of diffusive processes, including normal and
anomalous ones, can be obtained from the solutions found here.
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I. INTRODUCTION

The fractional approach applied to anomalous diffusion
has attracted the attention of many scientistsf1–7g. In fact,
the diffusion equations that emerge from this approach have
been applied in a rich variety of scenarios such as relaxation
to equilibrium in systemsssuch as polymer chains and mem-
branesd with long temporal memoryf8–11g, anomalous
transport in disordered systemsf12g, diffusion on fractals
f13g, and modeling of non-Markovian dynamical processes
in protein folding f14g. Formal properties concerning the
fractional diffusion equations have also been investigated.
For instance, inf15g the fractional diffusion and wave equa-
tions are discussed, inf16g boundary value problems for
fractional diffusion equations are studied, inf17g a fractional
Fokker-Planck equation is derived from a generalized master
equation, inf18g the behavior of fractional diffusion at the
origin is analyzed, inf19–25g the solutions of the time frac-
tional diffusion equation are obtained, inf26g a harmonic
analysis of random fractional diffusion-wave equations is
done, and inf27g a fractional Kramers equation is intro-
duced. In this direction, we focus on the analysis of the fol-
lowing fractional diffusion equation:

]g

]tgr =
1

rN−1

]

]r
HrN−1FDsrd

]

]r
r − FsrdrGJ s1d

where Fsrd is an external force, 0,gø1, and Dsrd is a
diffusion coefficient with a spatial dependence. The time
fractional derivative is considered in the Caputo representa-
tion f28g. We consider a spatial dependence on the diffusion
coefficient, i.e.,Dsrd=Dr−u, and the presence of an external
force Fsrd=−kr+Kra with a=−1−u. We investigate the so-
lutions for Eq.s1d by using the Green function method taking
finite and semi-infinite boundary conditions into account. It
is interesting to note that these kinds of boundary conditions,
which appear in several physical contexts, have not been
properly investigated in the fractional context. Notice that
Eq. s1d recovers the usual radial diffusion equation forg=1.
For Eq. s1d, it can be verified thate0

`dr rN−1r is time inde-
pendentshence, ifr is normalized att=0, it will remain so

foreverd. Indeed, if we write the equation in the form]tr
=−r1−N]rsrN−1Jd and assume the boundary conditions
Js` ,td→0, it can be shown thate0

`dr rN−1r is a constant of
motion.

The plan of this work is to investigate the time dependent
solutions of Eq.s1d by considering several situations, such as
the absence of external forces, taking a spatial time depen-
dence in the diffusion coefficient into account, and introduc-
ing an external force in the system. In this context, we first
study the situations characterized by boundary conditions de-
fined in a finite interval and then we extend our analysis to a
semi-infinite interval. These developments are done in Sec.
II. In Sec. III, we present the conclusions.

II. FRACTIONAL DIFFUSION EQUATION

We start our discussion by considering anN-dimensional
fractional diffusion equation with radial symmetry in the ab-
sence of external forces, taking a spatial dependence on the
diffusion coefficient, i.e.,Dsrd=Dr−u, into account. This spa-
tial dependence on the diffusion coefficient has been used to
investigate several physical situations such as the fast elec-
trons in a hot plasma in the presence of an electric fieldf29g,
turbulencef30,31g, and diffusion on fractalsf32,33g. For this
case, Eq.s1d is given by
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]tgr =
D

rN−1

]
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HrN−1r−u ]

]r
rJ . s2d

It is interesting to note that forg=1 andu=0 Eq.s2d recov-
ers the usual case and foru=0 it recalls a diffusion equation
used inf18g to investigate the behavior of the solution near
the origin when the free boundary condition is employed.
Here, we analyze Eq.s2d by using the boundary condition
rsa,td=0. Similar boundary condition is found in the analy-
sis of polymer dynamics, stratified porous media, and photo-
conductivity in amorphous semiconductors. By solving the
above equation subjected to this boundary condition, we ob-
tain
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0

a
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2 + u
D , s3d

whereNù2+u, ln seigenvalued is obtained from the equa-
tion JsN−2−ud/s2+udhf2ln/ s2+udgas2+ud/2j=0 andrsr ,0d= r̃srd is
the initial condition. In Eq.s3d, Gsr ,j ,td is the Green func-
tion andEgsxd is the Mittag-Leffler function which is given
by Egsxd=on=0

` xn/Gs1+gnd. The Mittag-Leffler function is
an extension of the usual exponential and the presence of this
function in Eq.s3d is a consequence of the changes produced
in the waiting time probability density function by the frac-
tional derivative. In order to illustrate the effect produced
due to the time fractional derivative and the spatial depen-
dence of the diffusion coefficient, we plot the Green function
in Fig. 1. In Fig. 2, we show the time evolution behavior of

Eq. s3d by employing, for simplicity,u=0 and the initial
conditionrsr ,0d=dsrd / rN−1.

We may extend the above result found for Eq.s2d by
consideringa→`. To obtain this extension, it is useful to
use

rsr,td =E
0

`

dkCsk,tdCsr,kd,

Csr,kd = r s2+u−Nd/2JsN−2−ud/s2+udS2krs2+ud/2

2 + u
D , s4d

whereCsk,td is the kernel to be found. By substituting Eq.
s4d in Eq. s2d, we obtain

dg

dtg
Csk,td = − Dk2Csk,td. s5d

By solving Eq. s5d, we found Csk,td=Csk,0dEgs−k2Dtgd,
whereCsk,0d is determined by the initial condition. By using
the initial conditionrsr ,0d= r̃srd, we verify

Csk,0d =
2k

2 + u
E

0

`

dj jN−1r̃sjdCsj,kd. s6d

Thus, the solution for this case is given by

FIG. 1. Behavior ofGsr ,j ,td versusr for typical values ofu and
g, by considering, for simplicity,t=1.0,j=2.0,a=6.0,N=3.0, and
D=1.0, in arbitrary units.

FIG. 2. Behavior ofrsr ,td versusr for typical values oft by
considering, for simplicity,g=0.5, a=6.0, N=3.0, u=0, and D
=1.0. The initial condition used for this case is theN-dimensional
Dirac d function, i.e.,rsr ,0d=dsrd / rN−1, in arbitrary units.
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rsr,td =E
0

`

dj jN−1r̃sjdGsr,j,td,

Gsr,j,td =
2

2 + u
E

0

`

dk kCsj,kdCsr,kdEgs− k2Dtgd. s7d

In particular, forg=1, we can simplify the above equation by
using the identity

E
0

`

dk kJnsakdJnsbkde−a2k2
=

1

2a2e−sb2+a2d/4a2
InS ab

2a2D
s8d

to obtain

Gsr,j,td =
e−sr2+u+j2+ud/s2 + ud2Dt/sDtd

s2 + udsjrdsN−2−ud/2

3I sN−2−ud/s2+udF2sjrds2+ud/2

s2 + ud2Dt G , s9d

whereInsxd is a modified Bessel functionssee Fig. 3d. In this
context, an interesting result emerges from Eq.s7d for g=1
with the initial conditionrsr ,0d=dsrd / rN−1. In fact, for this

case Eq.s7d is reduced torsr ,td~e−r2+u/s2+ud2Dt / tN/s2+ud by
using Eq.s9d and this initial condition. This distribution has
been applied to investigate situations related to turbulence
f30g and diffusion on fractalsf32,33g. In particular, inf33g

the diffusion equations proposed in the literature to investi-
gate diffusion on fractals are reviewed and critically dis-
cussed. Note also that the asymptotic expression for Eq.s9d
taking the large argument forInsxd into account is given by

Gsr,j,td ,
sjrds2+u−2Nd/4

Î4pDt
e−srs2+ud/2 − js2+ud/2d2/s2 + ud2Dt.

s10d

The above equation can be considered as an extension of the
asymptotic results reported inf2g for homogeneous and iso-
tropic random walk models. The asymptotic behavior for the
second moment associated with this process iskr2l, t2/s2+ud

for long times. In particular, we can verify from this
asymptotic behavior for the second moment that 0,u ,u=0,
and −2,u,0 correspond to sub-, normal, and superdiffu-
sive cases, respectively.

Let us incorporate an external force in Eq.s2d. More pre-
cisely, we consider the external forceFsrd=−kr+Kra with
a=−1−u, the boundary conditionrs` ,td=0, and the initial
condition rsr ,0d= r̃srd. This external force leads us to an
extension of the Ornstein-Uhlenbeck processf34g and the
Rayleigh processf35g. In addition, it is also similar to the
one used inf36g to investigate new solutions for the nonlin-
ear diffusion equation. Notice that to obtain an exact solution
for Eq. s2d in the presence of the above external force with a
generic a is a hard task. For this reason and to make it
possible to obtain an analytical solution in a closed form, we
have considered the relation betweena and u given by a
=−1−u. In order to obtain the solution, we expandrsr ,td in
terms of the eigenfunctions, i.e., we employ

rsr,td = rK/De−kr2+u/s2+udDo
n=0

`

CnsrdFnstd s11d

with Cnsrd seigenfunctiond determined by the spatial equa-
tion andFnstd obtained from the time equation. After some
calculation, it is possible to show that

Cnsrd = Ln
sādS kr2+u

s2 + udDD ,

Fnstd =
s2 + udGsn + 1d

G„sK + NDd/s2 + udD + n…
S k

s2 + udDDsK+NDd/s2+udD

3Egs− lnt
gdE

0

`

dj jN−1r̃sjdLn
sādS kj2+u

s2 + udDD s12d

with ā=hsK+NDd / fs2+udDgj−1, whereLn
sādsxd are associ-

ated Laguerre polynomials andln=s2+udnk. This result ex-
tends the result found inf2g for a linear external force and for
g=0, N=1, andu=0 we recover the solution for the Ray-
leigh process present inf35g. It is also interesting to note that
for this case the stationary solution is equal to the usual one.
In particular, the second moment for this case con-
sidering, for simplicity, u=0, is given by kr2l=2sND
+KdtgEg,g+1s−2ktgd, whereEm,bsxd=on=0

` xn/Gsmn+bd is the
generalized Mittag-Leffler function.

FIG. 3. Behavior ofGsr ,j ,td versusr for a typical values ofu
by considering, for simplicity,t=1.0,j=2.0,N=3.0, andD=1.0, in
arbitrary units.
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III. SUMMARY AND CONCLUSIONS

In summary, we have investigated the solutions for an
N-dimensional fractional diffusion equation within radial
symmetry. We have obtained the solution for this equation by
considering the absence of an external force and taking finite
and semi-infinite boundary conditions into account. We have
also considered the presence of an external force. This result
is in agreement with the results found inf2g. For time depen-
dent solutions, we have the presence of the Mittag-Leffler
function, which is an extension of the usual exponential, in
both casessi.e., for the free case and in the presence of

external forcesd. In particular, the presence of this function in
the solutions is a consequence of the changes produced in the
waiting time probability density function by the fractional
derivative. Finally, we expect that the results presented here
can be useful in the investigation of systems that exhibit
anomalous diffusion.
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